
Forensicate D ifferently!
Mac and iOS 
Forensic Analysis 
and Incident 
Response 

Apple Mail – com.apple.mail/ 
com.apple.mobilemail

Description
This is a default email application that can be configured to use a 
number of email clients.

Location
macOS:

•  Mailboxes: ~/Library/Mail/V#/<UUID>/*.mbox
•  Mailbox organization: ~/Library/Mail/V#/<UUID>/.mboxCache.plist
•  Envelope Index: ~/Library/Mail/V#/MailData/Envelope Index

Downloaded email attachments may be stored in:
•  �~/Library/Containers/com.apple.mail/Data/Library/MailDownloads/
•  ~/Downloads/
•  Extended Attributes (find using ls -l@)

iOS:
•  /private/var/mobile/Containers/Data/Application/<UUID>/
•  /private/var/mobile/Library/Mail/
•  Envelope Index: /private/var/mobile/Library/Mail/Envelope Index

Interpretation
•  �The UUID folders can be correlated with the Account4.sqlite database.
•  Mailboxes can contain nested mailboxes, messages and attachments.
    -  �Messages (macOS) or MessageData (iOS) folder contains raw 

EMLX email messages with an appended plist containing message 
metadata.

    -  �Attachments (macOS) or AttachmentData (iOS) folder contains 
message file attachments.

•  �Envelope Index sqlite database contains indexed mail data. It includes 
flags to show whether the email has been read, flagged, or deleted.

•  Database timestamps are in Unix Epoch format.

Wallet and Apple Pay
Description
The Wallet application keeps track of tickets, cards, and passes. The 
user can add a credit card to the Apple Pay portion of the application to 
use for purchases.

Location
macOS:

•  ~/Library/Passes/*
•  �iCloud synced data: ~/Library/Mobile Documents/

com~apple~shoebox/UbiquitousCards/*.pkpass
iOS:

•  /private/var/mobile/Library/Passes/*
•  �iCloud synced data: /private/var/mobile/Library/Mobile 

Documents/com~apple~shoebox/UbiquitousCards/*.pkpass

Interpretation
passes23.sqlite:

•  Database timestamps are in Unix Epoch format.
•  UNIQUE_ID will match the .pkpass filename.
•  �GROUP_ORDER shows the order of passes as shown to the user, with 

0 at the top.
•  �Not all transactions may be saved in this database.
•  �Only Apple Card transactions are synced across devices.
•  �Transactions specific to Apple Cash are called “peer payments” and 

may have more related information.
•  �Journeys using a stored transit card are recorded, including start and 

end stations.
.pkpass files:

•  Each card is a .pkpass package format directory.
    -  �pass.json stores the actual pass or card data.

Photos – com.apple.Photos
Description
Photos is the native photo gallery application, including photos and 
videos taken using the camera, screenshots, and synced media files.

Location
macOS:

•  ~/Pictures/Photos Library.photoslibrary/*
iOS:

•  /private/var/mobile/Media/PhotoData/*
•  /private/var/mobile/Media/DCIM/*
•  /private/var/mobile/Media/PhotoStreamsData/*
•  /private/var/mobile/Media/PhotoCloudSharingData/*

Interpretation
•  �Photos Library.photoslibrary on macOS is a package format directory.
•  �Extended attributes show a file was synced from iCloud if  

com.apple.quarantine contains cloudphotosd.
•  �Photos application adds the com.apple.assetsd.* extended attribute.
    -  �This includes the original filename, location, timezone, flags for 

“hidden” and “favorite,” and quarantine information.
•  �Photos taken with iOS 11+ use High Efficiency Image Container (HEIC) 

format. 
•  �Photos.sqlite database includes metadata for each media file.
    -  �It includes extracted EXIF embedded metadata, annotations, 

location information, and detected faces and objects.
•  �Each subfolder of DCIM can contain up to 999 files, which are 

sequentially named from IMG_0001.
•  �Other photos may be stored by third-party applications – use TCC.db 

to find those with Camera permissions.

Reminders – com.apple.reminders
Description
Reminders are user-created lists that can consist of tasks to be 
completed, or those already marked as done.

Location
macOS:

•  ~/Library/Reminders/Container_v1/Stores/*
iOS: 

•  /private/var/mobile/Library/Reminders/Container_v1/Stores/*

Interpretation
•  �Each sqlite database contains reminders from a certain source  

(e.g., local, iCloud).
•  �Every object in the database has a different Z_ENT value, which 

changes for different versions of the database.
    -  �OBJECT_TYPE shows which type each Z_ENT refers to.

Calendar – com.apple.iCal/ 
com.apple.mobilecal

Description
This is the native calendar application on macOS and iOS with which 
items can be synced from a variety of accounts. It can include both 
personal and shared calendars.

Location
macOS:

•  ~/Library/Calendars/*
iOS: 

•  /private/var/mobile/Library/Calendar/*

Interpretation
•  �Each calendar directory contains an Events folder, which contains ICS 

calendar files and an Info.plist file.
•  �CalDAV Info.plist and ICS files may contain more information than 

those within the calendar directory.
•  �Calendar.sqlitedb contains calendar information.
    -  �Table names have changed over time.
    -  �It includes locations, shared events, notes, contacts, and more.
•  Database timestamps are in Unix Epoch format in local time.

Messages – SMS and iMessage
Description
This is a native instant messaging application, which can be used with 
various different protocols.

Location
macOS:

•  ~/Library/Messages/chat.db
•  ~/Library/Messages/Attachments/*

iOS:
•  /private/var/mobile/Library/SMS/sms.db
•  /private/var/mobile/Library/SMS/Attachments/*

Interpretation
• SMS can only be used on iOS.
• Databases are sqlite and include messages and metadata.
    -  �Timestamps are in Mac Epoch format.
    -  �Apple Pay transactions are recorded in the attributedBody (BLOB) 

and payload_data fields (embedded binary plist).
    -  �filename field shows the path to an attachment.
    -  �mime_type shows the type of attachment.
    -  �transfer_name contains the attachment’s filename.
    -  �Users can edit messages within 15 minutes, these edits are kept in 

the database.

Notes – com.apple.notes/ 
com.apple.mobilenotes

Description
Notes of various types can be created on macOS, iOS, and on  
iCloud.com. These can be local device notes, or synced to all devices 
associated with the same iCloud account.

Location
macOS:

•  ~/Library/Group Containers/group.com.apple.notes/*
iOS FFS: 

•  �/private/var/mobile/Containers/Shared/AppGroup/<UUID>/*

Interpretation
•  �Even with syncing enabled, the user can choose to create local notes 

that are not synced.
•  Note attachments are stored in the Media folder.
•  Note thumbnails are stored in the Preview folder.
•  �Notes are stored in the sqlite database NoteStore.sqlite:
    -  �Z_ENT is an object type field. Different values for this field may 

have different meanings in different versions of the database.
    -  �ZFILENAME provides the attachment filename, as stored in the 

Media folder.
    -  �ZISPASSWORDPROTECTED = 0 (not encrypted), 1 (encrypted note).
    -  �ZTITLE1 provides the note title.
    -  �ZDATA stores the note body as a BLOB, which is a protobuf in a 

GZIP archive.
    -  �ZMARKEDFORDELETION shows whether the note will be cleaned 

up at some point.
†https://github.com/threeplanetssoftware/apple_cloud_notes_parser

Contacts – com.apple.AddressBook
Description
The Contacts application (or Address Book) holds user contact 
information and can be populated by the user or by other applications.

Location
macOS:

•  �~/Library/Application Support/AddressBook/*
iOS:

•  /private/var/mobile/Library/AddressBook/*

Interpretation
•  �Each source under the Sources folder could have its own associated 

database file and Metadata folder.
    -  �Metadata directories contain a binary plist file for each person 

(ending with p), subscription (s), or group (g).
    -  �Rename Metadata files to .plist in order to open with XCode.
•  �When searching for a person of interest, search for their UID, not just 

their name.
•  �Database timestamps are in Unix Epoch format in local time.

Contacts - FindMy
Description
The FindMy application allows people to share their location with others. 
If a user has any followers or contacts on FindMy, their metadata is 
stored in a JSON file.

Location
•  �/private/var/mobile/Library/Caches/com.apple.findmy.fmfcore/

FriendCacheData.data

Call History – Phone and FaceTime
Description
Phone and FaceTime are the native calling applications on macOS and iOS.

Location
macOS:

•  �~/Library/Application Support/CallHistoryDB/CallHistory.storedata
iOS:

•  /private/var/mobile/Library/CallHistoryDB/CallHistory.storedata

Interpretation
•  Phone reverse DNS name is com.apple.mobilephone.
•  FaceTime reverse DNS name is com.apple.facetime.
•  �Database is in sqlite format and includes calls made/received and 

metadata.
    -  �ZDATE timestamps are in Mac Epoch format in local time.
    -  �ZADDRESS = phone number or email address.
    -  �ZANSWERED = 0 (No), 1 (Yes).
    -  �ZCALLTYPE = 1 (telephony), 8 (FaceTime), 16 (FaceTime voice).
    -  �ZORIGINATED = 0 (incoming), 1 (outgoing with this user)
    -  �ZDURATION = time in seconds for this call.
    -  �ZSERVICE_PROVIDER = application used for the call.
•  macOS database may store contact information in an encrypted BLOB.
•  Some data may be synced across devices.

[iOS] Visual Voicemail
Description
Some, but not all, cellular carriers provide visual voicemail functionality 
on iOS devices, where voicemail audio files are downloaded to the device.

Location
•  /private/var/mobile/Library/Voicemail/*

Interpretation
•  �Each voicemail audio file (AMR file) has the ROWID from the 

voicemail.db sqlite database as a filename.
•  �If a voicemail has an accompanying transcript, this will be stored as 

an NSKeyedArchiver plist *.transcript file.
•  Database timestamps are in Unix Epoch format in local time.

Maps – com.apple.Maps
Description
This is the native mapping application on macOS and iOS. Map data can 
be synced between devices using iCloud.

Location
macOS:

•  ~/Library/Containers/com.apple.Maps/MapsSync_0.0.1
iOS:

•  �/private/var/mobile/Containers/Shared/AppGroup/CCB7770F-CF85-
4292-8389-66232373192D/Maps/MapsSync_0.0.1

Interpretation
•  iOS backup folder for Maps may be empty.

MapsSync_0.0.1:
•  �ZFAVORITEITEM table contains the user’s favorite locations
•  �ZTYPE = 2 (custom location)
•  �ZHISTORYITEM table shows user searches and queries (ZQUERY)
•  �MIXINMAPITEM table links together the history and favorite items
•  �ZMAPITEMSTORAGE stores location data as an embedded protobuf.

[iOS] Health
Description
Health information about the user is stored in a database, if enabled. 
This can include steps, distance, and heart rate, which can be collected 
using the Apple Watch.

Location
•  /private/var/mobile/Library/Health/healthdb_secure.sqlite

Interpretation
•  �Database is encrypted in iOS backups, but not in a Full Filesystem dump.
•  Use APOLLO† health_* modules to extract a user’s health data.

†https://github.com/mac4n6/APOLLO

Contact Interactions – InteractionC.db
Description
This database keeps track of who the user is communicating with using 
applications such as Messages, Mail, and Phone.

Location
macOS:

•  �/private/var/db/CoreDuet/People/interactionC.db
iOS:

•  /private/var/mobile/Library/CoreDuet/People/interactionC.db

Interpretation
•  �Data stored in this database includes the direction of 

communication (INCOMING or OUTGOING), start and end Mac Epoch 
timestamps, the application bundle id, contact information, and 
sender and recipient information.

[iOS] CarPlay
Description
Some information about vehicles the iOS device has been paired with 
are stored in plist files.

Location
•  �/private/var/mobile/Library/SpringBoard/<UUID>-

CarDisplayIconState.plist
•  �/private/var/mobile/Library/Preferences/[com.apple.

CarPlayApp|com.apple.carplay].plist

Interpretation
•  �<UUID>-CarDisplayIconState.plist shows the organization of icons 

on connected vehicle screens. The connected vehicle description is 
stored under the metadata key.

•  �com.apple.carplay.plist shows the most current Icon State UUID and 
paired vehicle type

•  �com.apple.CarPlayApp.plist shows recent apps under 
CARRecentAppHistory

Native Apple Applications

[macOS, Windows]  
Lockdown Files

Description
Connecting an iOS device to another system generates a 
lockdown file when the user selects “Trust This Computer”.

Location
macOS:

•  /private/var/db/lockdown/
Windows:

•  �C:\ProgramData\Apple\Lockdown\

Interpretation
•  �<iDevice UDID>.plist files are created for each iDevice 

paired with the system. Contains certificates, keybags, 
and other info used to access a locked device.

•  �Device PIN/passcode is required for pairing record 
creation.

•  Lockdown records expire after 30 days of no use.

[macOS]  
Time Machine Backups

Description
Time Machine is the native backup utility on macOS, 
which may or may not be enabled.

Location
Time Machine settings:

•  /Library/Preferences/com.apple.TimeMachine.plist
    -  �BackupAlias contains details about any backup 

disks.
    -  �SnapshotDates provide timestamps associated with 

backups.
    -  �It also includes other info such as filesystem type, 

encryption status, and backup frequency.
Logs:

•  Unified logs
    -  �Use log show –info –predicate 'process = "backupd"' 

to show backup info

Interpretation
Unified logs show when the backup started and finished, 
network or local location of backup, volume name backed 
up, amount of data backed up, and deletion of old 
backups.

[macOS, Windows] iOS Backups
Description
iOS devices can be backed up to iCloud or to a local macOS or Windows 
system, either automatically or manually. Backups can be encrypted if 
the user chooses to enable this feature and set a backup password.

Location
macOS:

•  ~/Library/Application Support/MobileSync/Backup/
Windows XP:

•  �C:\Documents and Settings\<user>\Application Data\Apple 
Computer\MobileSync\Backup\

Windows Vista+:
•  �C:\Users\<user>\AppData\Roaming\Apple Computer\MobileSync\

Backup\
Microsoft Store version of iTunes on Windows:

•  �C:\Users\<user>\Apple\MobileSync\Backup\

Interpretation
•  �Each subfolder is named for the device’s UDID. A11-: 40-character 

UDID, A12+: [8 digits]-[16 digits] UDID.
•  �Folders named <UDID>-<timestamp> may also exist, which are 

created during a restore/update of the iDevice.
•  �Status.plist includes timestamps of the backup, type, and whether a 

full backup was performed.
•  �Info.plist contains device name, serial number, ICCID, MEID, IMEI, 

UDID, phone number, make, model, iOS and build information, the 
last backup date, and installed applications.

•  �Manifest.plist contains the backup date, whether the backup is 
encrypted, whether a device passcode was set, and the lockdown key, 
including device info, serial number, and UDID.

•  �iOS 10+: Manifest.db contains metadata about backup files. Previous 
versions of iOS stored this same data in Manifest.mbdb.

•  �A backup needs to be normalized by mapping files back to their 
original names. This may be shown differently by various tools.

[macOS] Attached iDevices –  
com.apple.iPod.plist

Description
All iDevices that have been attached to the system while logged in as 
that user are recorded in a plist file.

Location
•  ~/Library/Preferences/com.apple.iPod.plist

Interpretation
Devices’ key contains one subkey per device, which includes the device 
type, IMEI, MEID, number of connections, time of last connection, and iOS 
version when last connected.

Bluetooth Devices
Description
Both macOS and iOS keep lists of Bluetooth devices that have been connected to the system.

Location
macOS:

•  �/Library/Preferences/com.apple.MobileBluetooth.devices.plist
•  �/Library/Databases/com.apple.MobileBluetooth.ledevices.other.plist
•  �/Library/Preferences/com.apple.MobileBluetooth.ledevices.paired.plist
• ~/Library/Application Support/Knowledge/knowledgeC.db

iOS: 
•  �/private/var/containers/Shared/SystemGroup/<GUID>/com.apple.MobileBluetooth.

devices.plist
•  �/private/var/containers/Shared/SystemGroup/<GUID/com.apple.MobileBluetooth.

ledevices.other.plist
•  �/private/var/containers/Shared/SystemGroup/<GUID/com.apple.MobileBluetooth.

ledevices.paired.plist
•  �/private/var/mobile/Library/CoreDuet/knowedgeC.db

Interpretation
•  �Use timestamps carefully – certain user interactions can change how these timestamps 

may be interpreted. For example, changing the name of a device might update the first 
connected timestamp.

•  �UnlockEnabled = yes – an Apple Watch can be used to unlock this macOS device.
•  �com.apple.MobileBluetooth.devices.plist keeps track of connected Bluetooth devices.
    -  �Timestamps are stored in localtime.
•  �com.apple.MobileBluetooth.ledevices.other.plist file keeps track of “seen” Bluetooth low 

energy devices, that have not necessarily connected to the system.
    -  �Note that this file will not include all nearby Bluetooth-enabled devices.
    -  �Some device MAC addresses may be randomized.
    -  �LastSeen is Unix Epoch timestamp in local system time when this device was last used
•  �com.apple.MobileBluetooth.ledevices.paired.plist keeps track of paired Bluetooth low-

energy devices.
•  �KnowledgeC.db keeps track of connected Bluetooth devices using the  

/Bluetooth/isConnected stream.
    -  �Use APOLLO† knowledge_audio_bluetooth_connected module.

FindMy – AirTags
Description
The FindMy application tracks information about the user’s AirTags.

Location
•  /private/var/mobile/Library/Caches/com.apple.findmy.fmipcore/Items.data

Interpretation
Items.data JSON file includes the owner, serial number, last connected timestamp and 
location information.

Connected/Paired Devices and Backups

Network Interfaces
Description
These are the network interfaces on the system, interface types, and 
Mac addresses.

Location
macOS:

•  �/Library/Preferences/SystemConfiguration/NetworkInterfaces.plist
•  �/Library/Preferences/SystemConfiguration/preferences.plist
iOS:
•  �/private/var/preferences/SystemConfiguration/

NetworkInterfaces.plist
•  /private/var/preferences/SystemConfiguration/preferences.plist

Interpretation
•  �Each interface has an Item key in NetworkInterfaces.plist
    -  �SCNetworkInterfaceType is IEEE802.11 for wireless interfaces, 

and Ethernet for wired interfaces.
    -  �IOMacAddress contains the unique MAC address for the interface
    -  It also contains the device model.

DHCP Settings
Description
Files in this folder contain the last known network settings for those 
interfaces using DHCP.

Location
•  /private/var/db/dhcpclient/leases/

Interpretation
•  �Each file within this directory includes lease information, router 

MAC address, IP address, and SSID, for a specified interface.

Wireless Network Connections
Description
This lists connections to access points, including wireless settings. It 
includes access points added using the WiFi menu and those synced 
from another device.

Location
macOS:

•  /Library/Preferences/com.apple.wifi.known-networks.plist
iOS:

•  /private/var/preferences/com.apple.wifi.known-networks.plist

Interpretation
com.apple.wifi.known-networks.plist:

•  �AddReason key shows whether the data has been synced.
•  �AddedAt timestamp shows when the access point was added to 

this plist file.
•  �JoinedByUserAt provides the timestamp when the user specifically 

joined the access point.
•  �JoinedBySystemAt provides the timestamp when the system auto-

connected to the access point.
•  �LocationLatitude and LocationLongitude provide the coordinates 

of the access point.
•  �PersonalHotspot shows whether this device connected via 

another device’s hotspot.

Network Usage – Logs
Description
Unified logs and system logs include entries for network connections 
made on the system.

Location
•  �Unified Logs
•  �System log

Interpretation
•  �Search for sender “IPConfiguration” and where the log message 

contains “Lease” or “network changed”.
    -  �Use log show –info –predicate 'senderImagePath contains[cd] 

"IPConfiguration" and (eventMessage contains[cd] "SSID" 
or eventMessage contains[cd] "Lease" or eventMessage 
contains[cd] "network changed")'

•  �Search logs for “configd”, “SSID”, or “en0” for a more detailed view 
of wireless activity.

•  �Search logs for “country code” to show the country codes 
associated with wireless access point connections.

    -  �Default code is “X0” when one is not available.

Network Information

digital-forensics.sans.org
DFPS_FOR518_0924

Poster was created by Kathryn Hedley and Sarah Edwards based on  
many years of research and macOS and iOS knowledge by Sarah Edwards. 
©2024 SANS Institute. All Rights Reserved

Top Tip!
Parse NSKeyedArchiver 

plists using Deserializer:

https://github.com/ydkhatri/

MacForensics/blob/master/

Deserializer/deserializer.py

Terminal History –  
Executed Commands

Description
Each user account stores a list of commands run in a zsh shell 
terminal within a hidden file in their home folder.

Location
•  ~/.zsh_history
•  ~/.zsh_sessions/<GUID>.history

Interpretation
•  �These are Plaintext files containing up to 1000 commands run 

in order of execution.
•  �An upgraded macOS system may also store up to the last 500 

commands run in a bash shell, in:
    -  �~/bash_history
    -  �~/.bash_sessions/<GUID>.history
•  The files are created the first time the Terminal application is run.
•  �History files are not updated until the user account logs out. 

Session files are updated when the Terminal is exited.
•  Files can be viewed on a live system using the history command.
•  <GUID>.history files contain commands executed in that session.

Screen Time
Description
This tracks time spent in applications, notifications, and device 
pickups by the user following a notification.

Location
macOS:

•  �/var/folders/<darwin_user_dir>/0/com.apple.
ScreenTimeAgent/RMAdminStore-*.sqlite

iOS:
•  �/private/var/mobile/Library/Application Support/com.apple.

remotemanagementd/RMAdminStore-*.sqlite

Interpretation
•  Data is organized by hour and category.
•  �Data retention is ~three weeks on iOS, and ~five weeks on 

macOS.
•  Device name and UUID are shown for synced data.

Application Usage – 
KnowledgeC

Description
Amongst other things, the KnowledgeC database tracks application  
usage, including start and end times, and how the application was 
launched and used.

Location
macOS:

•  ~/Library/Application Support/Knowledge/knowledgeC.db
•  /private/var/db/CoreDuet/Knowledge/knowledgeC.db

iOS:
•  /private/var/mobile/Library/CoreDuet/knowedgeC.db

Interpretation
•  It stores approximately four weeks of data.
•  �/app/usage stream keeps track of applications being used  

and when.
    -  �Use APOLLO† knowledge_app_usage module.
•  �/app/intents stream keeps track of what is happening in 

applications.
    -  �Use APOLLO† knowledge_app_intents module.
•  �/app/activity stream keeps track of application activities and 

interactions.
    -  �Use APOLLO† knowledge_app_activity module.
•  �/device/NowPlaying stream keeps track of what is playing and 

how it is playing.
    -  �Use APOLLO† knowledge_audio_media_nowplaying module.

†https://github.com/mac4n6/APOLLO

Application Usage – Biomes
Description
Many items that were once stored in knowledgeC.db can now 
be found in Biome files. This data type is scattered across the 
filesystem and appears to be where more of this data will be 
stored in the future.

Location
macOS:

•  ~/Library/Biome
•  /private/var/db/biome/

iOS:
•  /private/var/mobile/Library/Biome
•  /private/var/db/biome/

Interpretation
•  �Search for App.InFocus streams in Biome data.
•  �Each Biome record contains a protobuf file, which contains start 

and end times, the app bundle ID, and the transition reason.
•  �Each Biome record is stored in a flat file system, one after 

another.
•  �Biome records have somewhat different formats across devices  

and/or OS versions.
•  �Biome sync.db database keeps track of what devices are 

syncing across each other.

Application Usage –
CurrentPowerlog

Description
This shows nearly the same data as knowledgeC.db and Biomes. 
However, it may include additional data such as CarPlay, home 
screen, lock screen, and Siri usage.

Location
macOS:

•  �/private/var/db/powerlog/Library/BatteryLife/
CurrentPowerlog.PLSQL

iOS FFS:
•  �/private/var/Containers/Shared/SystemGroup/<GUID>/

Library/BatteryLife/CurrentPowerlog.PLSQL
iOS Sysdiagnose: 

•  /logs/powerlogs/CurrentPowerlog.PLSQL

Interpretation
•  It stores approximately three days of data.

Be wary of timestamps in this log –  
some, but not all, have an offset.

•  �Use APOLLO† powerlog_app_usage module to extract the 
correct application usage times.

• Use APOLLO† powerlog_incallservice module to extract call logs.
•  �Use APOLLO† powerlog_camera_state module to extract 

camera state information.
•  �Use APOLLO† powerlog_app_frontmost module to show which 

application is the “frontmost” app.
•  �Archived databases may also be present in the Archives 

directory
†https://github.com/mac4n6/APOLLO

Program Execution/
Application Usage

Application Data
Description
This determines application information, including name and version.

Location
macOS:

•  /Applications/<Bundle ID>/*
•  ~/Library/Containers/…/<Bundle ID>/*
•  ~/Library/Application Support/<Bundle ID>/*
•  ~/Library/Preferences/*.plist
•  ~/Library/Caches/*

Sandboxed applications:
•  �~/Library/[Group] Containers/<Bundle ID>/Data/Library/Application 

Support/<App Name>/
•  ~/Library/[Group] Containers/<Bundle ID>/Data/Library/Preferences
    -  �<TLD>.<Company>.<Application>.plist file contains the user’s 

preferences
•  ~/Library/Caches

Non-sandboxed applications (legacy):
•  ~/Library/Application Support
•  ~/Library/Preferences
    -  �<TLD>.<Company>.<Application>.plist file contains the user’s 

preferences
•  ~/Library/Caches

iOS FFS:
•  /private/var/mobile/Containers/…/<Bundle ID>/*
•  /private/var/mobile/Containers/Bundle/Application/<GUID>/*
    -  �Contains application binary file
•  /private/var/mobile/Containers/Data/Application/<GUID>/*
•  /private/var/mobile/Containers/Shared/AppGroup/<GUID>/*
    -  �Data shared among apps with the same developer
•  /private/var/mobile/Library/Cache/<Bundle ID>/*
•  /private/var/mobile/Preferences/*.plist

Interpretation
•  �Each container is named in reverse DNS format.
•  �Each container directory contains a .com.apple.containermanagerd.

metadata.plist file with application information.
•  �Each container directory contains a Data directory. The most interesting 

subdirectories are likely those that are not links.
•  �Info.plist file contains app name, bundle ID, and version information.
    -  �Similar information for iOS apps is stored in iTunesMetadata.plist, 

including the purchase date and user information.
•  �Cached items rarely get backed up, so typically won’t be found in an 

iOS backup.

Keyboard Dictionary
Description
When a user types words into the device’s keyboard, certain words are 
recorded in user dictionary files to help with autocorrection and predictive 
text features. These files should not contain anything typed into sensitive 
fields such as passwords, although may include sensitive data the user 
may have typed into non-secure areas such as notes. These files may or 
may not be included in iOS backups.

Location
macOS: 

•  ~/Library/Spelling/*dynamic-*.dat
iOS: 

•  /private/var/mobile/Library/Keyboard/*dynamic-*.dat

Interpretation
•  �English dictionaries are dynamic-*.dat
•  �Other languages have their own files and will be preceded by their 

language abbreviation (e.g., ar for Arabic)

[iOS] Application Snapshots
Description
When an application is minimized to the background, a screenshot of the 
current screen is saved to the filesystem, to be used as a preview. App 
developers can choose to replace the screenshot with another image. This 
is commonly done for security reasons, such as in banking applications.

Location
•  <Application directory>/Library/Splashboard/Snapshots/<Bundle ID>/*

Interpretation
•  �Snapshots are PNG files
•  �They are usually only available on FFS acquisitions
•  �Previous versions of iOS generated snapshots as KTX files

Autorun Applications
Description
Autorun applications are those that automatically run when a user logs in.

Location
macOS:

•  �/System/Library/LaunchAgents/*.plist
•  �/Library/LaunchAgents/*.plist
•  �~/Library/LaunchAgents/*.plist
•  �/System/Library/LaunchDaemons/
•  �/Library/LaunchDaemons/

macOS 14:
•  �/private/var/db/com.apple.backgroundtaskmanagement/

BackgroundItems-v9.btm
macOS 13: 

•  �~/Library/Application Support/com.apple.
backgroundtaskmanagementagent/backgrounditems.btm

iOS:
•  /Library/LaunchAgents/*.plist
•  /System/Library/LaunchDaemons/
•  /System/Library/NanoLaunchDaemons/
•  /Library/LaunchDaemons/
    -  �Requires jailbroken device to acquire

Interpretation
•  Login items can be hidden from view of the user.
•  Launch Daemons are background system processes.
•  Launch Agents are background user processes.
•  plist files are named in reverse DNS format.
•  �BackgroundItems-v9.btm / backgrounditems.btm is an 

NSKeyedArchiver plist file.

Saved Application State
Description
Application State information is stored, to allow it to be returned to its 
previous state after a reboot, if the user selects “reopen windows when 
logging back in” on shutdown.

Location
macOS:

•  �macOS legacy apps: ~/Library/Saved Application State/<bundle_id>.
savedState/

•  �macOS sandboxed apps: ~/Library/Containers/<Bundle ID>/Data/
Library/Application Support/<App Name>/Saved Application 
State/<bundle_id>.savedState/

iOS:
•  �<Application directory>/Library/Saved Application State/<bundle_id>.

savedState/

Interpretation
•  �The existence of these directories indicates the user has used these 

applications.
•  �Each *.savedState directory contains at least two files: 
    -  �[macOS] windows.plist and data.data
    -  �[iOS] restorationinfo.plist and data.data

Application Notifications
Description
Notifications for applications are stored by the Graphical User Interface for 
the system. For macOS, this is called Finder; for iOS, it is SpringBoard.

Location
macOS: 

•  �/private/var/folders/<DARWIN_USER_DIR>/com.apple.
notificationcenter/db2/db

�iOS: 
•  �/private/var/mobile/Library/UserNotifications/<app GUID>/*.plist

Interpretation
macOS:

•  �The user’s DARWIN_USER_DIR path will be different for each user on 
the system.

•  �Attachments to notifications will be found in the /attachments 
directory.

•  �Database tracks notification delivery date, app bundle IDs, 
presentation, and style.

    -  �NOTIFICATION DATA is a BLOB that contains a binary plist.
iOS:

•  plist files are in NSKeyedArchiver format.
•  Notifications cleared by the user are removed from plist files.
•  �Other files in the same folder contain interface-specific items such as 

background pictures, icon layouts, and widgets.
•  �Pair app GUIDs with their associated bundle IDs by looking in [/private/

var]/mobile/Library/UserNotificationsServer/Library.plist. This file is 
not included in iOS backups.

Software Installation and Updates
Description
This determines installed applications and updates, including timestamps, 
package names, and software used to install an application.

Location
macOS: 

•  �~/Library/Caches/com.apple.appstoreagent/storeSystem.db
•  �/Library/Receipts/InstallHistory.plist
•  /Library/Preferences/com.apple.SoftwareUpdate.plist
    -  �When system last checked for updates, how many updates were 

available, recommended updates.
•  �/var/log/install.log
    -  �Search the file for “Installed” to find app names and versions.
•  �/var/db/receipts/
    -  �Each software package install has a .bom and a .plist file.
    -  �plist file contains install timestamp, package name, and installer process.
    -  �bom file contains list of files and metadata for application.

iOS: 
•  �/private/var/installd/Library/Logs/MobileInstallation/mobile_

installation.log.#
    -  �Search the file for “Installing” to find app names and versions, for 

approximately one month of app installs.
    -  �Search for “Make container live” for app installs.
    -  �Search for “Destroying container” for app uninstalls.
    -  �Search app bundle IDs for specific app activity.
•  �/private/var/mobile/Library/FrontBoard/applicationState.db
    -  �It contains an embedded plist.

Interpretation
•  �InstallHistory.plist processName:
    -  �macOS Installer = System OS installer/updater
    -  �softwareupdated or “Software Update” = System/security updates
    -  �storedownloadd = App Store install
    -  �Installer = External installer
•  bom file can be viewed using lsbom <bom file> command.
•  �install.log file will not include software installed via a drag and  

drop method.

Application Permissions – TCC
Description
Applications on macOS and iOS ask users which permissions they 
may have for different capabilities on the system. This is recorded in 
Transparency, Consent, Control (TCC) databases.

Location
macOS:

•  ~/Library/Application Support/com.apple.TCC/TCC.db
•  /Library/Application Support/com.apple.TCC/TCC.db

iOS:
•  /private/var/mobile/Library/TCC/TCC.db

Interpretation
•  �Apps may have access to permissions such as: Location, Contacts, 

Calendars, Photos, Bluetooth, Microphone, Camera, and Health
•  �last_modified = when this permission for this app was last updated in TCC
•  auth_value = 0 (not allowed), 2 (allowed).
•  kTCCServiceUbiquity permission is associated with iCloud.
•  �kTCCServiceEndpointSecurityClient permission is associated with 

Endpoint Security
•  �KTCCServiceSystemPolicyAllFiles permission is associated with  

Full Disk Access
•  �Not all permissions are shown to the user in the user interface.
•  �iOS TCC database is available in backup, physical and sysdiagnose 

acquisitions.

Third-Party Kernel Extensions
Description
Kernel modules are often used as device drivers, network filters, or support 
for filesystems, and can be used maliciously.

Location
•  /private/var/db/loadedkextmt.plist
•  /Library/Apple/System/Library/Extensions/
•  /System/Library/Extensions/
•  /Library/Extensions/
•  /Library/StagedExtensions/
•  /Library/SystemExtensions/
•  /Library/<Filesystems/macfuse.fs/Contents>/Extensions/

Interpretation
•  �On a live system, use systemextensionsctl list command to list loaded 

system extensions and kmutil showloaded command to list loaded 
kernel extensions.

•  Each extension is a bundle containing an Info.plist file.

Application Data

[macOS] Extended Attributes
Description
A few extended attributes can reveal file sharing, including the 
sender, recipient, and application used. 
AirDrop allows users to “drop” files to another user’s device if 
that device is close by and using WiFi or Bluetooth. Extended 
attributes for a received file will show the name of the device the 
file was sent from using AirDrop.

Location
Everywhere! See extended attribute names for files:

•  ls -l@
    -  �com.apple.quarantine contains the service of sharingd
    -  �com.apple.assetsd attributes contain AirDrop data such as 

file metadata and whether it was trashed or hidden
    -  �com.apple.metadata:* contains Spotlight metadata
    -  �com.apple.metadata:kMDItemWhereFroms provides the 

time and application, (e.g., “Received via Messages file 
transfer”) 

        •  �For files shared via AirDrop, this attribute provides the 
name of the device the item was sent from.

View extended attributes for a file:
•  xattr -xl <file>

Interpretation
•  �It shows files shared using AirDrop, email, Messages, and 

other applications.
•  �Spotlight database can be searched for these attributes to 

look for evidence of file sharing.
•  �Be aware that a device name can be changed by the user.

AirDrop ID & Discoverability
Description
AirDrop uses a StreamID to identify itself to other devices. The 
last StreamID used can be found in these plist files.

Location
macOS: 

•  �~/Library/Preferences/[ByHost]/com.apple.
sharingd.<HWUUID>.plist

•  �~/Library/Preferences/com.apple.sharingd.plist
iOS: 

•  �/private/var/mobile/Library/Preferences/com.apple.
sharingd.plist

Interpretation
•  �StreamID stores the device identifier.
•  �If an Apple Watch is being used to unlock a macOS device, this 

information can also be found in here.

AirDrop Activity – Unified Logs
Description
Files sent and received via AirDrop are tracked in Unified Logs. 
This includes a unique identifier for the transaction (AirDrop ID), 
the type of file being sent, whether the connection was accepted, 
and potentially where the received file ended up.

Location
•  Unified Logs

Interpretation
•  �If you can analyze both the sending and receiving devices, you 

can tie the activity together using the AirDrop ID (ReceiverID). 
If only one device is available, attribution is much more 
difficult.

•  Be aware that device hostnames can easily be changed.
•  Log shows whether the connection was “Accepted” or 
“Declined.”

Spotlight
Description
Spotlight indexes the system to allow the user to search for files 
quickly. Indexing includes metadata that indicates file sharing.

Location
•  �~/Library/Application Support/com.apple.spotlight/com.

apple.spotlight.Shortcuts.v3
•  �/.Spotlight-V100/Store-V2/<GUID>
•  �~/Library/Metadata/CoreSpotlight/index.spotlightV3

Interpretation
•  �Presence of the kMDItemOriginMessageID attribute shows 

files received via Apple Mail. 
•  �kMDItemUserShare* keys can show sender and recipient 

metadata for Messages or AirDrop file transfers.
•  �kMDItemOriginApplicationIdentifier shows the application 

used.

[macOS] Shared Folders
Description
Information and metadata for shared folders on the system

Location
•  /private/var/db/com.apple.xpc.launchd/disabled*.plist
•  /Library/Preferences/com.apple.RemoteManagement.plist
•  /private/var/db/dslocal/nodes/Default/sharepoints/*.plist
    -  �List of shared folders and their metadata

Interpretation
disabled.plist:

•  By default, none of these settings are enabled.
•  �Look for com.apple.smbd and/or com.apple.AppleFileServer 

as the bundle IDs for shared folders.
sharepoints/*.plist:

•  Each shared folder has its own plist file.

iCloud Documents
Description
iCloud stores local copies of documents shared using various 
applications. 

Location
macOS:

•  ~/Library/Mobile Documents/
iOS:

•  /private/var/mobile/Library/Mobile Documents/

Interpretation
•  �Each subdirectory corresponds to an application and is 

named in reverse DNS format but using tildes (~).
•  �Extended attributes for these documents include the iCloud 

Person ID in com.apple.ubd.prsid.
•  �Hidden *.icloud files correspond to files that have not been 

downloaded to this device.
    -  �These are binary plist files that contain the file’s name  

and size.

File and Folder 
Sharing

https://github.com/threeplanetssoftware/apple_cloud_notes_parser
https://github.com/mac4n6/APOLLO
https://github.com/mac4n6/APOLLO
https://github.com/mac4n6/APOLLO


[macOS] com.apple.loginwindow.plist
Description
Last logged-in user, current logged-in user (on live system), auto-login 
user (if configured), and other settings are recorded in a plist file.

Location
•  /Library/Preferences/com.apple.loginwindow.plist

Interpretation
•  �A user may choose “Automatic login” in preferences. Their (XOR’d) 

password is then stored in /etc/kcpassword. Decode using the script 
from https://gist.github.com/opshope/32f65875d45215c3677d

•  �Automatic login is not available for user FileVault or iCloud credential logins.

[macOS] User Logins
Description
These are successful and failed user account login and logout events.

Location
•  System log
•  Unified logs
•  ASL

Interpretation
•  Login events are marked with USER_PROCESS and the process ID.
•  Login type is identified by:
    -  �loginwindow = login via the GUI
    -  �login = login via the Terminal
    -  �sshd = login via SSH
    -  �screensharingd = Screen Sharing
•  Logoff events are marked with DEAD_PROCESS and the process ID.

[macOS] su Logins
Description
These are successful and failed su logins.

Location
•  Audit logs
•  Unified logs

Interpretation
•  View su logins in Audit logs: praudit -xn /var/audit/* - su
•  �View attempts to use sudo in Unified Logs: log show --predicate 

‘(process == “su” or process == “sudo”) and eventMessage contains “tty”’

[macOS] Account Creation
Description
Entries in the audit log are added when a user account is created.

Location
•  Audit logs

Interpretation
•  �create user event includes the name of the new user and the UID of 

the user who created. 

[macOS] Screen Lock/Unlock
Description
Events are recorded when the screen is locked or unlocked.

Location
•  Unified logs

Interpretation
•  �Screen lock events contain com.apple.sessionagent.screenIsLocked
•  �Screen unlock events contain com.apple.sessionagent.

screenIsUnlocked
•  �This includes unlock actions using a regular password, TouchID, or 

Apple Watch.

[macOS] Known SSH Hosts
Description
These are Hostnames, IP addresses, and public keys for hosts that this 
system has connected to via SSH, for which the user decided to save the key.

Location
•  ~/.ssh/known_hosts
•  ~/.ssh/authorized_hosts

Interpretation
•  By default, hostnames and IP addresses will be readable.
    -  �This data will be hashed if HashKnownHosts is set to yes in the  

/etc/ssh/ssh_config file.

[macOS] su Privilege Escalation
Description
Users with su privileges are recorded, as well as a log of commands that 
have been run as root.

Location
Users with root-level privileges:

•  /etc/sudoers
Unified logs

Interpretation
•  Look for the sudo or su process.

Account Usage
[macOS] Extended Attributes –  

DMG File Opened
Description
Double-clicking a DMG file produces two additional extended attributes 
for that file that are specific to this action and this file type. These 
extended attributes show that the DMG was opened at least once.

Location
Everywhere! See extended attribute names for files:

•  ls -l@
    -  �com.apple.diskimages.fsck provides file system check information.
    -  �com.apple.diskimages.recentcksum provides checksum info 

and download date (Unix Epoch).
View extended attributes for a file:

•  xattr -xl <file>

Interpretation
The first open timestamp from this process is recorded in  
~/Library/Logs/fsck_hfs.log

[macOS] Extended Attributes –  
File Last Used

BEWARE: This attribute may not show when the user last viewed 
a file as it’s not always updated. For example: using the Finder 

QuickLook function will not update this timestamp.

Description
This extended attribute shows when a file was last viewed either 
using Finder or the “open” command in the Terminal.

Location
Everywhere! See extended attribute names for files:

•  ls -l@
    -  �com.apple.lastuseddate#PS stores Unix Epoch timestamp of 

when file was last used, as it pertains to the file system
View extended attributes for a file:

•  xattr -xl <file>

Interpretation
Not all file types have this attribute.

[macOS] .DS_Store – Folder Access
Description
Hidden DS_Store files can exist all over macOS systems, and are 
created when the Finder application is used to access a directory.

Location
Everywhere!

•  .DS_Store

Interpretation
•  These files implement a B-tree format.
•  �For trashed files, .DS_Store contains the original filename and 

original file path.

[macOS] Most Recently Used (MRU)
Description
A number of artifacts store information about recently accessed 
folders, applications, documents, hosts, and volumes on the system.

Location
•  ~/Library/Preferences/com.apple.finder.plist
    -  �FXRecentFolders key lists recently accessed folders in order, 

with the most recent under Item 0
    -  �file-bookmark BLOB contains the full folder path, Volume 

Name, and Volume GUID 
•  �~/Library/Application Support/com.apple.LSSharedFileList.*.sfl[2 or 3]
    -  �Recent items per application, volume, or host

Microsoft Office 365:
•  �~/Library/Containers/com.microsoft.<app>/Data/Library/

Preferences/com.microsoft.<app>.securebookmarks.plist
    -  �Each key includes the last-used timestamp in kLastUsedDateKey.
    -  �kBookmarkDataKey contains a bookmark data BLOB that 

includes the file path, volume name, and volume GUID.

Interpretation
•  SFL files are binary plists that use the NSKeyedArchiver format.
•  �Most native MRU lists keep the last 10 items by default. Microsoft 

Office keeps more.

[macOS] Recent Folders
Description
These are folders recently accessed by the user account.

Location
•  ~/Library/Preferences/com.apple.finder.plist
    -  �FXRecentFolders contains a bookmark data BLOB in file-bookmark

Interpretation
•  Item 0 is the most recent and item 9 is the least.

[macOS] Recent Items
Description
These are items recently accessed by the user account, per application.

Location
•  ~/Library/Application Support/com.apple.LSSharedFileList.*.sfl[2 or 3]

Interpretation
•  The list contains both native and third-party applications.
•  Files are named in reverse DNS format.

File/Folder Opening System and User Information

[macOS] Finder – Mounted Volumes
Description
The Finder application on macOS stores a list of volumes that have been 
mounted on the Desktop within a plist file. It includes the volume name 
with X and Y coordinates of volumes when mounted on the Desktop.

Location
•  ~/Library/Preferences/com.apple.finder.plist
    -  �FXDesktopVolumesPositions key

Interpretation
Note: Some volumes may have an appended number.† 

•  �The key will not exist if the user does not have Finder preferences 
configured to show items on the Desktop.

• It includes host volumes, USB drives, and mounted DMG files.
† �Darren Freestone has determined this is a “hexadecimal floating 
point constant” value representing the volume creation timestamp 
for HFS+/APFS volumes, but is only a negative value for FAT/ExFAT 
volumes.

[macOS] Logs – Mounted Volumes
Description
Logs record what volumes were mounted on the system and can include 
the device file the volume is using, volume size, name, and mount point.

Location
•  /var/log/daily.out
•  System log
•  Unified logs

Interpretation
•  �Search for “/Volumes/” to find any volumes mounted under the 

default mount point.
•  �You can also search system.log and unified logs for apfs, hfs, 

mounted, unmounted, or disk#s#.
•  �Find connections to network shares by searching for afp://, or on 

older systems: afpfs://, smbfs://, or smb://
•  �Searching on the volume name can find activity relating to that volume.
•  �Daily logs record what volumes were mounted on the system 

when the daily maintenance script was run.

[macOS] Favorite Volumes
Description
These are a list of favorite volumes, including the volume name and 
properties.

Location
•  �~/Library/Application Support/com.apple.sharedfilelist/com.

apple.LSSharedFileList.FavoriteVolumes.sfl[2 or 3]

Interpretation
•  NSKeyedArchiver plist file containing Bookmark BLOBs.

[macOS] Search Logs for  
Connected USB Devices

Description
The USB Mass Storage Class (USBMSC) Identifier can be used to find 
USBMSC device connections in the System log and in Unified logs, 
including the device serial number, vendor, and product information.

Location
•  System log
•  Unified logs

Interpretation
•  Search for USBMSC
    -  �Typical structure of these records: USBMSC Identifier  

(non-unique): <serial number> <VID> <PID> <version>
•  Be aware that not all USBMSC entries are user-initiated.
•  �You can also find network share connections by filtering Unified 

Logs: process = NetAuthSysAgent AND sender = loginsupport

Volumes and 
External Device/ 

USB Usage

Acquiring and Mounting Images 
Mounting APFS E01 Image  
(With or Without FileVault) 

Create mount point directories:
sudo mkdir /Volumes/apfs_image/
sudo mkdir /Volumes/apfs_mounted/

Create DMG file from E01 image:
sudo xmount --in ewf apfs.E01 --out dmg /Volumes/apfs_image/

Attach the image:
hdiutil attach -nomount /Volumes/apfs_image/apfs.dmg

List the disks to find the correct volume to mount:
(non-FileVault disk) diskutil ap list
(FileVault disk) diskutil ap unlockVolume <Disk GUID> -nomount

Mount volume:
sudo mount_apfs -o rdonly,noexec,noowners /dev/disk#  
/Volumes/apfs_mounted/

Mounting APFS Snapshot
View APFS Snapshots available for system:
diskutil ap listsnapshots /System/Volumes/Data

Create mount point directory:
sudo mkdir /Volumes/snapshot_image/

Mount snapshot:
sudo mount_apfs -s snapshot.local  
/System/Volumes/Data /Volumes/snapshot_mounted/

Mounting APFS DMG Image
Mount image:
hdiutil mount apfs.dmg -shadow
Using the -shadow option redirects writes to a file instead of modifying 
the original image.

Unmounting a Mounted Image
View mounted disks:
diskutil list

Eject mounted disk:
diskutil eject /dev/disk#

Find disk to unmount:
sudo mount

Unmount disk:
sudo umount /Volumes/disk_image/

Acquiring an Image of a Live System 
Using Apple System Restore (ASR)

Create a DMG as large as the disk is allocated:
hdiutil create -fs apfs -size <##GB> asrdisk.dmg

Make the new DMG available to the system:
sudo hdiutil attach -nomount asrdisk.dmg

Restore the source disk to the target DMG:
sudo asr restore --source /dev/disk# --target /dev/disk# --debug 
--erase –verbose

Safari Browser Session Restore
Description
Automatic Crash Recovery features are built into the browser.

Location
macOS:

•  �~/Library/Containers/com.apple.Safari/Data/Library/Caches/com.
apple.Safari/TabSnapshots/*

•  �~/Library/Containers/com.apple.Safari/Data/Library/Caches/com.
apple.Safari/TabSnapshots/Metadata.db

    -  �Connects URL to the filename (UUID) in the TabSnapshots folder.
iOS:

•  /private/var/mobile/Library/Safari/BrowserState.db
•  �/private/var/mobile/Containers/Data/Application/<GUID>/Library/

Safari/Thumbnails/*.png

Interpretation
BrowserState.db:

•  Visit timestamps are stored in Mac Epoch format.
•  order_index shows the tab order.
•  �private_browsing shows 0 (regular) or 1 (private browsing) mode 

being used.
•  session_data contains a BLOB.

Thumbnail KTX files:
•  �Each screenshot is a preview of a tab, including those in private 

browsing mode.
•  �Files only present for tabs open when Safari was last backgrounded.

Safari Browser History
Description
This is the history of websites a user has visited. Some may be synced 
from iCloud, if this setting has been enabled, with devices and synced 
URLs listed in the Cloud Tabs database.

Location
macOS:

•  �~/Library/Safari/History.db
•  �~/Library/Containers/com.apple.Safari/Data/Library/Safari/

SafariTabs.db
•  �~/Library/Containers/com.apple.Safari/Data/Library/Safari/

CloudTabs.db
iOS:

•  /private/var/mobile/Library/Safari/History.db
•  /private/var/mobile/Library/Safari/SafariTabs.db
•  /private/var/mobile/Library/Safari/CloudTabs.db

Interpretation
History.db:

•  �On iOS, this data is retained for ~one month, on macOS, it’s retained 
for ~one year by default (but can be re-configured).

•  �history_items contains URLS, domains, and visit counts.
•  �history_visits contains Mac Epoch timestamps of visits, and webpage 

titles.
•  �Origin = 0 (visit occurred on this device), 1 (synced from another 

system via iCloud).
•  �SafariTabs.db stores browser session data and currently open tabs, 

and Tab Groups (think Bookmarks).
•  �CloudTabs.db lists synced iCloud tabs and devices that are syncing the 

user’s Safari web history.
•  �[macOS] RecentlyClosedTabs.plist also keeps track of recently closed tabs.

Safari Downloads
Description
Safari download history is stored in a configuration file and can indicate 
websites visited and items downloaded.

Location
•  ~/Library/Safari/Downloads.plist

Interpretation
•  �By default, items are removed from this list after one day.
    -  �This can be changed by the user to “When Safari Quits”, “Upon 

Successful Download”, or “Manually”.
•  �DownloadEntryURL (macOS) and sourceURL (iOS) show where the 

download originated.
•  �DownloadEntryPath (macOS) is the file path to show where the item 

was downloaded to.
•  �DownloadEntryDateAddedKey (macOS) and DateAdded (iOS) indicate 

when the download started.
•  �DownloadEntryDateFinishedKey (macOS) and DateFinished (iOS) 

indicate when the download finished.

[macOS] Extended Attributes –  
File Download

Description
Apple uses extended attributes to store metadata about downloaded files, 
including the download date and where the file was downloaded from.

Location
Everywhere! See extended attribute names for files:

•  ls -l@
    -  �com.apple.quarantine provides quarantine data for downloaded 

files, including download time (Unix Epoch hex) and application 
used to download the file.

    -  �com.apple.metadata:kMDItemDownloadedDate provides the 
download date in NSDate format (8-byte BE).

    -  �com.apple.metadata:kMDItemWhereFroms provides the URL the 
item was downloaded from, and referring URL.

View extended attributes for a file:
•  xattr -xl <file>

Interpretation
•  �Not all applications will create all of the above extended attributes; 

attributes produced depend on the app developer.
•  �kMDItemDownloadedDate is not stored by Chrome
• kMDItemWhereFroms is not stored for Safari “Safe Files”

[macOS] Extended Attributes –  
Email Attachment Download

Description
A few extended attributes are created when an email attachment is 
downloaded.

Location
Everywhere! See extended attribute names for files:

•  ls -l@
    -  �com.apple.quarantine provides the download time and application 

(e.g., Mail).
View extended attributes for a file:

•  xattr -xl <file>

Safari Cookies
Description
Cookies provide insight into which websites have been visited and what 
activities might have taken place there.

Location
macOS:

•  �~/Library/Safari/Cookies.binarycookies 
•  �~/Library/Containers/com.apple.Safari/Cookies.binarycookies 

iOS:
•  �/private/var/mobile/Library/Safari/Cookies.binarycookies
•  �/private/var/mobile/Containers/Data/Application/<UUID>/Library/

Safari/Cookies.binarycookies

Interpretation
•  �Safari also uses the Cookie file  

com.apple.Safari.SafeBrowsing.binarycookie
•  �Other applications that have internal browsers may have their own 

WebKit cache and cookies.

Safari Browser Cache
Description
Files may be cached by the browser when the user visits a webpage. Full 
reconstruction of a website using only cached items is unlikely.

Location
macOS:

•  �~/Library/Containers/com.apple.Safari/Data/Library/Safari/com.
apple.Safari/WebKitCache/Version ##/*

iOS:
•  �/private/var/mobile/Containers/Data/Application/<UUID>/Library/

Caches/WebKit/Version ##/*

Interpretation
•  �Records/SubResources folder contains a list of cached items per 

website visit and embedded SHA1 hashes for each file.
•  �Records/Resources folder contains cached data and metadata, 

including SHA1 of filename for related file in the Blobs folder.
•  �Additional cached data may exist in the Blobs folder.
•  �Cached data may be stored in multiple separate files if it’s too large to 

fit into a single file. This is often seen with media.

Browser Usage and File Download

Search – Spotlight
Description
Spotlight indexes the system to allow the user to search for files quickly. 
Indexing includes file metadata, extended attributes, and content of some 
file types.

Location
User shortcuts (searches):

•  �~/Library/Application Support/com.apple.spotlight/com.apple.
spotlight.Shortcuts.v3

•  �~/Library/Group Containers/group.com.apple.spotlight/com.apple.
spotlight.Shortcuts.v3

Main Spotlight indexing databases:
•  /.Spotlight-V100/Store-V2/<GUID>
    -  �VolumeConfiguration.plist contains indexing exclusions and other 

configuration data.
    -  �Cache directory contains subdirectories of text-based versions of 

original documents, each named for the file’s inode.
    -  �[.]store.db are the index databases.
User database: 
•  ~/Library/Metadata/CoreSpotlight/index.spotlightV3

Interpretation
•  �A volume can explicitly be marked to disable indexing by placing  

a hidden, empty file named .metadata_never_index in the root of  
the volume.

•  �Some locations are not indexed by default, including DMG files, CDs, 
DVDs, hidden files and system directories.

•  User shortcut files provide words actually typed in by the user.

[macOS]  
Files Quarantined by XProtect AV

Description
Some applications implement file tagging, so XProtect can automatically 
quarantine downloaded files that are deemed to be potentially malicious. 
Files that are quarantined are recorded in a database.

Location
•  �~/Library/Preferences/com.apple.LaunchServices.QuarantineEvents.V2

XProtect signature file: 
•  �/Library/Apple/System/Library/CoreServices/XProtect.bundle/

Contents/Resources/Xprotect.plist
    -  �Xprotect.meta.plist in the same folder contains the date the 

signature file was last updated.

Interpretation
•  �If an application is implementing this feature, it will have the 

LSFileQuarantineEnabled key set to True in its Info.plist file.
•  �Files copied off a USB or downloaded using an app that does not 

implement this feature will not be checked by XProtect.
•  �LSQuarantineTimeStamp = Timestamp when file was quarantined 

(Mac Absolute/WebKit time)
•  �LSQuarantineAgentBundleIdentifier = Application bundle ID that 

downloaded the file 
•  �LSQuarantineAgentName = Application that downloaded the file
•  �LSQuarantineDataURLString = URL the file was downloaded from
•  �LSQuarantineTypeNumber = 0 (web browsers), 1 (XCode), 2 (Apple 

Mail), 3 (iChat), 6 (AirDrop), and 7 means another app.
•  �XProtect is only updated when Apple decides to update it and 

signatures are limited.
•  �The com.apple.quarantine extended attribute for a downloaded file 

may also contain useful information.

[macOS] Trash
Description
Any files or folders deleted by the user are saved into a hidden Trash 
folder in the root of that user’s home directory.

Location
•  ~/.Trash

Interpretation
•  Some trashed files can be restored using the “Put Back” option.
    -  �If the file has this option, the data can be found in the .DS_Store file 

in Trash.
•  �Safari “Safe” files are sent directly to Trash as they are auto-unzipped 

on download.
•  �Option available in com.apple.finder.plist to remove files from Trash 

after 30 days.
•  �iCloud may have its own Trash in the Mobile Documents directory.

File System Events Store Database
Description
Each volume connected to a Mac system will have a File System Events 
Store Database that is responsible for storing file system changes on the 
volume. It includes events such as file/folder creation and renaming, 
unzipping of files, item deletion, Trash being emptied, and volumes being 
mounted and unmounted.

Location
•  /.fseventsd/

Interpretation
•  �Directory contains gzipped files that require root privileges to unzip 

and view.
•  It can be wiped during a system crash or a hard power off.
•  �Events do not have associated timestamps. Approximate times can 

sometimes be estimated using filenames and paths.
•  �Parse using FSEvents Parser https://github.com/mac4n6/FSEventsParser  

(Updated fork of original script by Nicole Ibrahim)

Document Versions
Description
Document Versions (or Revisions) allows macOS to automatically back up 
certain types of documents or restore documents after a system crash. 
Versions are created when a document is saved, opened, every hour a 
document is open, and when it is frequently being edited. This feature is 
only supported by certain applications.

Location
macOS:

•  /System/Volume/Data/.DocumentRevisions-V100
iOS FFS:

•  /private/var/.DocumentRevisions-V100

Interpretation
•  �/db-V1/db.sqlite – Contains metadata for document versions
•  �/.cs/ChunkStorage/* – contains file versions 
•  �Microsoft Office does not implement Document Versions; this has its 

own autosave feature.
•  �Users can access document versions within an application via  

File → Revert To → Browse All Versions…
•  �Hidden .DocumentRevisions-V100 directory contains a folder named 

PerUID or AllUIDs.
    -  �Subdirectories are named <UID>, which are unique across all UIDs 

on system volumes.
•  �<UID> subdirectories contain further subdirectories named in reverse 

DNS format:
    -  �com.apple.documentVersions contains versions for documents 

saved on the local volume.
    -  �com.apple.ubiquity contains versions for documents saved on the 

local volume and iCloud.
    -  �com.apple.thumbnails contains versions for QuickLook thumbnails.
•  �Each file version or generation has extended attributes associated 

with “genstore.”
    -  �com.apple.genstore.info contains an embedded binary plist that may 

include the hostname of the system on which the version was created.
    -  �com.apple.genstore.origdisplayname or com.apple.genstore.posixname 

stores the filename for this generation.
•  �Note that file versions may be shown as zero bytes in size.
•  �Some tracked files may not be stored using ChunkStorage, but 

instead stored inline in the APFS file system

To get a list of versions for a file:
•  �Find the file’s inode number using ls -li
•  �Find entries for this inode in db.sqlite by joining the GENERATIONS 

and FILES tables

To get the content of a file version:
•  �Navigate to the generation_path provided in the GENERATIONS 

table in db.sqlite
•  �Run ls -li to get the file’s inode
•  �Find the inode’s associated entry in the CSStorageChunkListTable 

table in ChunkStoreDatabase
•  �Interpret the BLOB in clt_chunkRowIDs to extract entry ID(s)
•  �For each entry ID ct_rowid in the CSStorageChunkListTable table, 

get the filename stored in ft_rowid
•  �Each Chunk Storage data file is located in nested subdirectories  

of the /.cs folder and stores the file version’s content after the  
25th byte

Deleted File or File Knowledge

macOS vs. Windows Artifacts*

plist files 	 	 Registry

fsevents 	 	 USNJrnl

DS_Store 	 	 Shellbags

Trash 	 	 Recycle Bin

Spotlight 	 	 Windows Search

Extended attributes 	 	 ADS

LoginItems & Launch  
Agents/Daemons 	 	 Autoruns

MRU 	 	 MRU

Spotlight 	 	 Prefetch

knowledgeC.db 	 	 SRUM

macOS Artifacts on Non-Mac Systems
Copying data from a macOS system to a non-Mac system does 
not always copy everything.

	 HFS+/APFS	 FAT/exFAT

Document Versions	 4	 8

Spotlight	 4	 4

Trash	 4	 4

File System Events	 4	 8  
		  (empty dir)

Extended Attributes	 4	 4  
		  (separate (AppleDouble) file)

.DS_store files	 4	 4

*NOTE: These are not exact like-for-like comparable artifacts, but do contain similar types of data.

Apple System Log (ASL)
Location

•  /private/var/log/asl/
    -  �YYYY.MM.DD.[UID].[GID].asl
    -  �Login records (utmp, wtmp, lastlog): BB.YYYY.MM.DD.[UID].[GID].asl

Additional syslog data directories: 
•  AUX.YYYY.MM.DD

Interpretation
•  �View using Console.app or syslog command.
•  �Messages logged by syslog: TTL is seven days.
•  �Messages logged by utmp, wtmp, and lastlog: TTL is 366 days.
•  �Timestamps are stored in UTC.
•  �Collate logs: syslog -F raw -T utc -d /private/var/log/asl/ > asl.log
    -  �Open in Console: open -a Console asl.log

[macOS 13-] Audit Logs
Location

•  �/private/var/audit/<start_time YYYYMMDDHHMMSS>.<end_time 
YYYYMMDDHHMMSS>

Audit log configuration files: 
•  �/etc/security/audit_*

Interpretation
•  �Deprecated on macOS 11, disabled in macOS 14 
•  �Timestamps are stored in UTC.
•  �praudit command may output timestamps in local time.
    -  �Use TZ=UTC command to temporarily change terminal timezone to UTC.
•  �Collate logs: praudit -xn /private/var/audit/*.* > audit.log
    -  �Open collected log in Console: open -a Console audit.log

System.log
Location

•  /private/var/log/system.log

Interpretation
•  Timestamps are stored in localtime.
•  �Concatenate system logs into one file using the command:  

gzcat system.log.{6..0}.gz > system_all.log

Unified Logs
Location

•  �/private/var/db/diagnostics/*.tracev3
•  �/private/var/db/uuidtext/*
    -  �Messages associated with SessionAgentNotificationCenter show 

user-initiated actions relating to system shutdown events.

Interpretation
•  �Timestamps are stored in UTC.
•  �Create logarchive bundle for offline analysis:
    -  �Create logarchive folder: sudo mkdir logs.logarchive
    -  �Copy log files:  

cp -R /private/var/db/uuidtext/ /private/var/db/diagnostics/ logs.
logarchive

    -  �Make logarchive format:  
/usr/libexec/PlistBuddy -c "Add :OSArchiveVersion integer 4"  
logs.logarchive/Info.plist

•  �Analysis:
    -  �Get USBMSC entries:  

log show logs.logarchive/ --timezone UTC --info --predicate 
'eventMessage contains "USBMSC"'

    -  �Search for a device’s volume name:  
log show logs.logarchive/ --timezone UTC --info --predicate 
'eventMessage contains "VOL_NAME"'

    -  �Export unified logs to text file:  
log show logs.logarchive/ --timezone UTC --info > galaga_logs.txt

    -  �List shutdowns/reboots:  
log show logs.logarchive/ --timezone UTC --info --predicate 
'eventMessage contains "com.apple.system.loginwindow" and 
eventMessage contains "SessionAgentNotificationCenter'"

    -  �List shutdown cause:  
log show logs.logarchive/ --timezone UTC --info --predicate 
'eventMessage contains[c] "shutdown cause'"

    -  �Get backup logs:  
log show logs.logarchive/ --timezone UTC --info --predicate 'process 
= "backupd" and category = "general"'

    -  �Get network logs:  
log show logs.logarchive/ --timezone UTC --info --predicate 
'senderImagePath contains[cd] "IPConfiguration" and 
(eventMessage contains[cd] "SSID" or eventMessage contains[cd] 
"Lease" or eventMessage contains[cd] "network changed")'

Log Files

Physical Location
Applications Requesting  

Location Permissions
Description
The system records a list of applications that have requested location services.

Location
macOS:

•  ~/Library/Application Support/com.apple.TCC/TCC.db
•  /Library/Application Support/com.apple.TCC/TCC.db
•  /private/var/db/locationd/clients.plist

iOS:
•  /private/var/mobile/Library/TCC/TCC.db
•  /private/var/root/Library/Caches/locationd/clients.plist

Interpretation
TCC.db:

•  �It includes last_modified timestamp for each permission for each 
application.

•  auth_value = 0 (not allowed), 2 (allowed).
•  �KTCCServiceLiverpool permission is generally assumed to be part of 

location services.
•  �iOS TCC database is available in backup, physical and sysdiagnose 

acquisitions.
clients.plist:

•  �Authorization = 1 (Never), 2 (While Using), 4 (Always),
    -  �No Authorization key means “Ask.”
•  �CorrectiveCompensationEnabled = 1 (or no key) means Precise 

Location is enabled, 2 means disabled.

[iOS] Frequent and Significant Locations
Description
When enabled, the Significant Locations setting uses location services to 
keep track of a device’s location and finds routines in their pattern.

Location
•  �/private/var/mobile/Library/Caches/com.apple.routined/*.sqlite

Interpretation
•  �Setting can be enabled or disabled in Settings → Privacy → Location 

Services → System Services → Significant Locations.
•  �Algorithm to establish how the device marks a location as “frequent” 

is unknown.
•  �Cloud[-V2].sqlite database shows visits to certain locations.
    -  �Use APOLLO† routined_cloud_visit_entry module to extract 

location visits.
•  �Cache.sqlite database contains very granular location data for about 

one week.
    -  �Use APOLLO† routined_cache_zrtcllocationmo module to extract 

location visits.
•  �Data is also found on macOS, however it is encrypted.

†https://github.com/mac4n6/APOLLO

Cellular and WiFi Locations
Description
Locations of various cellular and WiFi access are recorded in a few databases.

Location
macOS:

•  /private/var/folders/*/<DARWIN_USER_DIR>/cache_encrypted*.db
•  �/private/var/folders/*/<DARWIN_USER_DIR>/lockCache_encrypted*.db

iOS FFS:
•  /private/var/root/Library/caches/locationd/cache_encrypted*.db
•  �/private/var/root/Library/caches/locationd/lockCache_encrypted*.db

Interpretation
•  Data is retained for ~one week, but this varies per table.
    -  �Data in the WifiLocation table is retained for ~four days.
•  Timestamps are stored in Mac Epoch and appear to be accurate.
•  Locations are accurate to within the general area.
•  MAC addresses are stored in Base10.
•  �<DARWIN_USER_DIR> will be different for each user and is explained 

in more detail at: http://www.swiftforensics.com/2017/04/the-
mystery-of-varfolders-on-osx.html

•  �Use APOLLO† locationd_cacheencryptedAB_ltecelllocation module to 
extract location data.

†https://github.com/mac4n6/APOLLO

FindMy – Device Location
Description
The FindMy application tracks a user’s iCloud connected devices in a JSON file.

Location
•  �/private/var/mobile/Library/Caches/com.apple.findmy.fmipcore/

Devices.data

Interpretation
•  This can include devices such as AirPods.
•  Includes last connected timestamp and location.

Operating System Version  
and Serial Number

Description
This determines the OS version, build version, and serial number.

Location
macOS:

•  /System/Library/CoreServices/SystemVersion.plist 
    -  OS version, build version
•  /private/var/folders/*/<DARWIN_USER_DIR>/cache_encryptedA.db
    -  Serial number

iOS:
•  /mobile/Library/Logs/AppleSupport/general.log
•  /logs/AppleSupport/general.log
    -  Device model, OS version, serial number
•  �/private/var/containers/Data/System/<GUID>/Library/activation_

records/activation_record.plist
•  �/private/var/containers/Data/System/<GUID>/Library/activation_

records/wildcard_record.plist
    -  Device UDID, IMEI, model, serial number
•  �/private/var/mobile/Library/Preferences/com.apple. 

springboard.plist
    -  �Device locale, OS version, as well as settings such as erase device 

after 10 failed passcode attempts
•  �/private/var/mobile/Library/Preferences/com.apple. 

purplebuddy.plist
    -  �Device setup info, including original locale, setup time, and 

hardware model
•  Info.plist
    -  Device hostname, model, UDID, iOS version, serial number

Operating System Installation Date
Description
This determines the OS installation date and date of updates.

Location
•  /private/var/db/.AppleSetupDone
    -  �Date of last OS update: stat -x /private/var/db/.AppleSetupDone 

(Change date).
•  /private/var/log/install.log
    -  �OS installation date: grep "Installed\ \"macOS" install.log
•  /private/var/db/softwareupdate/journal.plist
    -  �InstallDate keys show OS installation timestamps.
•  �/private/var/mobile/Library/Preferences/com.apple. 

purplebuddy.plist
    -  �Device setup info, original locale, setup time, device model.

Interpretation
There may be a difference in time zones – original time zone is 
Cupertino, before user sets their own.

User Accounts
Description
Each user and group has their own plist file.

Location
•  /private/var/db/dslocal/nodes/Default/users/
•  /private/var/db/dslocal/nodes/Default/groups/

Interpretation
Files may be binary or XML plist files depending on the OS version.

•  Access to these directories requires root privileges.
•  �Each plist file contains the account creation timestamp, last 

password reset time, username, and potentially the associated 
email address.

•  �Timestamps are stored in Unix Epoch format. 
•  �failedLoginCount and failedLoginTimestamp values do not appear 

to be updated.

[macOS] User Account Passwords
Description
User account password hashes are stored locally. The format and 
location of these has changed with different versions of macOS.

Location
•  �/private/var/db/dslocal/nodes/Default/users/*
    -  �ShadowHashData key in plist files contains the password hash.

Interpretation
• Password hash is a salted SHA512 PBKDF2 hash.
• �John The Ripper (JTR) and Hashcat include password cracking 
support for all of these hashes.

Deleted User Accounts
Description
If any user accounts have been deleted on the system, they will be 
listed in a plist file under the deletedUsers key. This file may not exist 
if no accounts have been deleted.

Location
•  �/Library/Preferences/com.apple.preferences.accounts.plist

Interpretation
•  �When a user account is deleted, the user’s plist in the /private/var/

db/dslocal/nodes/Default/users/ directory is also removed.
•  Lists user’s name, UID, username, and deletion date for each 
account.
•  �Three options for the user’s data are made available when an 

account is deleted:
    -  �Save the home folder to a DMG file, which is saved to  

/Users/Deleted Users/
    -  Leave the home folder in place.
    -  Remove the user’s home directory.

Time Zone
Description
This determines the current time zone of the system.

Location
•  /etc/localtime
•  /Library/Preferences/.GlobalPreferences.plist

Interpretation
The GlobalPreferences.plist file contains the time zone configuration 
data. It may not be updated when switching between static location 
and location services.

•  �/Library/Preferences/com.apple.timezone.auto.plist shows if 
location services are enabled.

•  Timezone changes are recorded in system.log and Unified Logs.
    -  �Timestamps stored in localtime in system log and UTC in Unified 

Logs.
    -  �Search for “location” or “timezoned”.
    -  �Timestamp jumps may also be visible in /var/log/* as these logs 

record events in local time.
    -  �Last modified timestamp of /etc/localtime symlink is updated 

when the timezone is changed.

[iOS] Evidence of Jailbreaking
Description
Some indicators may exist that point to a device being jailbroken. 
Indicators will differ depending on the device and type of jailbreak used.
Location

•  /private/etc/fstab
    -  �Look for System partition mounted as rw.
•  /Applications
    -  �Look for unofficial app stores associated with jailbreaks.  

Common apps: Cydia, Bydia, Zydia, Installer, 25pp, Maiyadi.
    -  �Look for apps associated with jailbreaks. Common apps: 

Meridian, LiberiOS, mac_portal, Pangu, unc0v3r, rootlessJB, 
checkra1n.

    -  �Look for unauthorized apps associated with jailbreaks. Common 
apps: iFile, SBSettings, or SSH, tethering, and configuration apps.

•  �Files or directories associated with any of the above apps, or 
forensic utilities (e.g., dumpkeys6 is created by Elcomsoft).

iCloud-Synced Accounts  
and Preferences

Description
Each iCloud account synced to the system will be recorded as a 
file named for the iCloud Person ID in the iCloud Accounts folder. 
This same directory contains links named for each email address 
associated with an iCloud account that points to the relevant iCloud 
Person ID for that account. Preferences are also synced across devices 
into the SyncedPreferences folder.

Location
macOS:

•  ~/Library/Application Support/iCloud/Accounts/*
•  ~/Library/SyncedPreferences/
•  �~/Library/Containers/<Bundle ID>/Data/Library/

SyncedPreferences/
iOS FFS:

•  /private/var/mobile/Containers/…
•  /private/var/mobile/Library/SyncedPreferences/

Interpretation
Each application syncing with iCloud has its own plist in the 
SyncedPreferences folder.

[macOS] Firewall Configuration
Description
The Application-Level Firewall (ALF) is turned off by default. It is one of 
two default firewalls on macOS systems. The second is the IP/packet 
filtering firewall.

Location
ALF configuration:

•  /Library/Preferences/com.apple.alf.plist
    -  �globalstate = 1 (firewall enabled), 0 (firewall disabled).
    -  �allowsignedenabled = 1 (allow signed software to receive 

incoming connections).
    -  �allowdownloadsignedenabled = 1 (allow downloaded signed 

software to receive incoming connections).
    -  �stealthenabled = 1 (stealth mode enabled).
    -  �applications key lists apps configured in the firewall.
        •  �state = 0 (incoming connections allowed), 2 (incoming 

connections blocked).
Packet filter firewall configuration:

•  /etc/pf.conf

Managed Device Profiles
Description
Devices can be managed through enterprise Mobile Device 
Management systems or settings pushed to the device by an 
organization or carrier. These devices have a configuration profile 
installed, which outlines allowed actions and limitations. Provisioning 
profiles allow apps to run without being downloaded from the App 
Store (sideloading).

Location
macOS:

•  /private/var/db/ConfigurationProfiles/
iOS:

•  Configuration profiles:
    -  �/private/var/mobile/Library/UserConfigurationProfiles/
    -  �/private/var/containers/Shared/SystemGroup/systemgroup.

com.apple.configurationprofiles
•  Provisioning profiles:
    -  �/private/var/MobileDevice/ProvisioningProfiles/

Interpretation
•  Use “profiles” command to extract detailed configuration.
•  �Malware and jailbreaks can use provisioning profiles, as well as 

legitimate MDM solutions. Look for app names, timestamps, and 
developer certificates.

•  �Provisioning profile plist:
    -  �CreationDate key is when the app was sideloaded.
    -  �ExpirationDate will show to expire after seven days for a free 

developer account or 365 days for a paid account.
    -  �ProvisioningDevices key shows UDIDs for all devices that also 

have this application installed.

[iOS] Cellular Information
Description
Cellular information is information associated with the device and SIM. 
It includes the current and historical ICCID, phone number(s), IMSI, and 
carrier information.

Location
•  �/private/var/wireless/Library/Preferences/com.apple.commcenter.

data.plist
•  �/private/var/wireless/Library/Databases/CellularUsage.db

Interpretation
•  Timestamps may not necessarily reflect expected SIM usage.
•  CarrierBundleName can be used to map carrier ID to name.
•  �Note the esim key is set to 1 when the device uses an eSIM instead 

of a physical SIM

[macOS] System Boot, Reboot,  
and Shutdown

Description
When the system boots up and is shut down is recorded within log files.

Location
•  System log
    -  �Search for “BOOT_TIME” and “SHUTDOWN_TIME” – these entries 

include an associated Unix Epoch timestamp.
•  Unified logs
    -  �Messages associated with SessionAgentNotificationCenter show 

user-initiated actions relating to system shutdown and restart 
events.

Interpretation
•  �Search for “halt” for shutdown events and “reboot” for  

reboot events.
•  �The system records the reason for the sleep/shutdown as  

“Sleep Cause” or “Shutdown Cause.”
    -  �<0 = error
    -  �0 = hibernation (sleep) or battery removal/power plug 

(shutdown)
    -  �3 = hard shutdown (power button held)
    -  �5 = normal sleep/shutdown

Device Lock/Unlock and  
Plugged In – KnowledgeC

Description
Amongst other things, the KnowledgeC database tracks when the 
device is locked or unlocked and when it is plugged in or power is 
disconnected.

Location
macOS:

•  ~/Library/Application Support/Knowledge/knowledgeC.db
iOS FFS:

•  /private/var/mobile/Library/CoreDuet/knowedgeC.db

Interpretation
•  Stores approximately four weeks of data
•  �/device/isLocked stream keeps track of when a device is locked  

and unlocked.
    -  �Use APOLLO† knowledge_device_locked module.
•  �/device/isPluggedIn stream keeps track of power connection and 

disconnection events.
    -  �Use APOLLO† knowledge_device_pluggedin module.

Battery Levels – CurrentPowerlog
Description
CurrentPowerlog keeps track of the device’s battery status and 
whether it is charging.

Location
macOS:

•  �/private/var/db/powerlog/Library/BatteryLife/CurrentPowerlog.
PLSQL

iOS FFS:
•  �/private/var/Containers/Shared/SystemGroup/<GUID>/Library/

BatteryLife/CurrentPowerlog.PLSQL
iOS Sysdiagnose: 

•  �/logs/powerlogs/CurrentPowerlog.PLSQL

Interpretation
•  It stores approximately three days of data.
•  Be wary of timestamps in this log – some, but not all, have an offset.
•  �Archived databases may also be present in the Archives directory
•  �Use APOLLO† powerlog_battery_level module to extract battery 

information.

[macOS] Installed Printers  
and Print Jobs

Description
This shows the printers and scanners that are installed on the system 
and their configurations.

Location
•  /Library/Preferences/org.cups.printers.plist
    -  �Each Item key refers to an installed printer.
•  /etc/cups/ppd/*.ppd
    -  �One file per printer; contains capabilities such as page size, 

resolution, and color.
•  /private/var/spool/cups/c#####
    -  �Print job control files containing metadata about a print job with 

ID corresponding to the filename.
    -  �Persistent files
• /private/var/spool/cups/d#####-###
    -  �Print job PDF data files are named in line with corresponding  

control file.
    -  �Non-persistent files should be removed immediately after the 

print job completes, unless job is cancelled or an error occurred.

Interpretation
•  �Clues in device-uri such as dnssd or tcp.local indicate a network-

connected printer (as opposed to a cable).
•  �Print job control files include which printer was used, the 

originating user account, job name, and application used.

[macOS] Screen Sharing and  
Remote Login Preferences

Description
These are settings for items that can be shared, including screen 
sharing and remote access to the system.

Location
Preferences:

•  /private/var/db/com.apple.xpc.launchd/disabled*plist
•  /Library/Preferences/com.apple.RemoteManagement.plist
    -  �Created when screen sharing or remote management options are 

enabled.
•  /Library/Preferences/com.apple.VNCSettings.txt
    -  Contains the XOR’ed password to access the system via VNC.
    -  �Use the Perl script created by Ben Low to decode: 

cat com.apple.VNCSettings.txt | perl -wne 'BEGIN { @k = unpack 
"C*", pack "H*", "1734516E8BA8C5E2FF1C39567390ADCA"}; chomp; 
@p = unpack "C*", pack "H*", $_; foreach (@k) { printf "%c", $_ ^ 
(shift @p || 0) }; print "\n"'

Screen sharing events:
•  Unified Logs
    -  �Search for “screensharingd”

Interpretation
disabled.plist:

    -  �By default, none of these settings are enabled.
    -  �com.apple.screensharing = NO (0) – Screen sharing is enabled.
    -  �com.openssh.sshd = NO (0) – Remote Login is enabled.
    -  �If the bundle ID for a service does not appear in the list, it was 

likely never enabled.

Keychains
Description
The keychains on a system are used to store sensitive data such as 
usernames, passwords, and encryption keys.

Location
macOS:

•  ~/Library/Keychains/login.keychain-db
•  iCloud: ~/Library/Keychains/<Hardware UUID>/keychain-2.db
•  /Library/Keychains/System.keychain

iOS FFS:
•  /private/var/Keychains/keychain-2.db

iOS encrypted backup:
•  Keychain*/keychain-backup.plist

Interpretation
•  �login.keychain-db may contain user passwords for access points, 

Time Machine, applications, and websites.
•  Default login.keychain-db password is the user’s account password.
•  �System.keychain contains passwords for VPNs, access points, Time 

Machine, and applications.
•  iCloud keychain-2.db may contain information from other iDevices.
•  �On iOS backups, the keychain may be stored in a Keychains or 

KeychainDomain folder, depending on the acquisition tool used.
    -  �iCloud keychain items are not specifically backed up in this  

plist file.
•  �View a keychain file using the Keychain Access.app macOS 

application or using the strings or security commands if the 
keychain is not encrypted.

Accounts Configured on the System
Description
A user can configure accounts on the system, such as email, calendar, 
and iCloud.

Location
macOS:

•  ~/Library/Accounts/Accounts4.sqlite 
•  �/Library/Preferences/SystemConfiguration/com.apple.accounts.

exists.plist
iOS:

•  /private/var/mobile/Library/Accounts/Accounts3.sqlite
•  �/private/var/Preferences/SystemConfiguration/com.apple.

accounts.exists.plist

Interpretation
•  �ZACCOUNT table in the sqlite databases contains account 

information.
    -  �ZUSERNAME is the account username.
    -  �ZACCOUNTTYPEDESCRIPTION is the account type description.
    -  �ZDATE is the account setup date in Mac Epoch format.
    -  �ZKEY is the configuration key name.
    -  �ZVALUE is the configuration value, as a BLOB that contains a 

binary plist.
•  �com.apple.accounts.exists.plist file has two associated keys per 

account:
    -  �Exists shows if the account is in use.
    -  �Count shows how many of this account type there are.

[iOS] Apple Watch Data
Description
If an Apple Watch is paired with an iPhone (it cannot be paired with 
any other iOS devices), some data will be synced with that iPhone.

Location
•  /private/var/mobile/Library/DeviceRegistry/<GUID>/*
•  /private/var/mobile/Library/DeviceRegistry.state/<GUID>/*

Interpretation
•  �historySecureProperties.plist includes device serial number, IMEI, 

Bluetooth MAC address, and WiFi MAC address of the device.
†https://github.com/mac4n6/APOLLO

Poster was created by Kathryn Hedley and Sarah Edwards  
based on many years of research and macOS and iOS knowledge  
by Sarah Edwards.

©2024 SANS Institute. All Rights Reserved DFPS_FOR518_0924

https://github.com/mac4n6/APOLLO
https://github.com/mac4n6/APOLLO

